Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

نویسندگان

  • Vivian M Hernández
  • Daniel J Hegeman
  • Qiaoling Cui
  • Daniel A Kelver
  • Michael P Fiske
  • Kelly E Glajch
  • Jason E Pitt
  • Tina Y Huang
  • Nicholas J Justice
  • C Savio Chan
چکیده

UNLABELLED Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

This Week in The Journal

Most neurons in the external segment of the globus pallidus (GPe) contribute to the indirect pathway from the dorsal striatum to the output nuclei of the basal ganglia, relaying information from the striatum to the subthalamic nucleus. But 25% of GPe neurons project back to the striatum. These neurons, called arkypallidal neurons, were recently proposed to cancel movements that are in the prepa...

متن کامل

Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia

The basal ganglia (BG) integrate inputs from diverse sensorimotor, limbic, and associative regions to guide action-selection and goal-directed behaviors. The entopeduncular nucleus (EP) is a major BG output nucleus and has been suggested to channel signals from distinct BG nuclei to target regions involved in diverse functions. Here we use single-cell transcriptional and molecular analyses to d...

متن کامل

Dichotomous Organization of the External Globus Pallidus

Different striatal projection neurons are the origin of a dual organization essential for basal ganglia function. We have defined an analogous division of labor in the external globus pallidus (GPe) of Parkinsonian rats, showing that the distinct temporal activities of two populations of GPe neuron in vivo are underpinned by distinct molecular profiles and axonal connectivities. A first populat...

متن کامل

Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus

Dysfunction of the striatum is frequently associated with sleep disturbances. However, its role in sleep-wake regulation has been paid little attention even though the striatum densely expresses adenosine A2A receptors (A2ARs), which are essential for adenosine-induced sleep. Here we showed that chemogenetic activation of A2AR neurons in specific subregions of the striatum induced a remarkable ...

متن کامل

The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons.

We show that most globus pallidus neurons, but very few neocortical interneurons, are generated from the ventral medial ganglionic eminence and dorsal preoptic area based on fate mapping using an Shh-Cre allele. The Shh-expressing subpallial lineage produces parvalbumin(+) GABAergic neurons, ChAT(+) cholinergic neurons, and oligodendrocytes. Loss of Nkx2-1 function from the Shh-expressing domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 34  شماره 

صفحات  -

تاریخ انتشار 2015